
Module-1: First-Order Partial Differential Equations

1. Introduction

Many problems in mathematical, physical, engineering, biological sciences etc. deal

with the formulation and the solutions of the first-order partial differential equations.

These equations provide a conceptual basis which can be utilized for higher-order

equation as well.

2. Classification of First-Order Equations

The most general first-order partial differential equation in two independent vari-

ables x and y is of the form

F(x,y,z,zx, zy) = 0, x,y ∈D ⊂ Rn (1)

where z = z(x,y) is an unknown function of the independent variables x and y, F is a

given function of arguments and zx =
∂z
∂x , zy =

∂z
∂y . Equation (1) in terms of standard

notation p = zx, q = zy takes the form

F(x,y,z,p,q) = 0, (2)

Similarly, the most general first-order partial differential equation in three inde-

pendent variables x, y, u is of the form

F(x,y,u,z,zx, zy , zu) = 0. (3)

In a similar way, we can construct first-order partial differential equations in any

number of independent variables. However, we limit ourselves to two independent

variables x, y and the dependent variable z.

First-order partial differential equations of the form (2) can be classified into four

categories as follows:

(a) Linear equation

Equation (2) is said to be linear if F is linear in each of the variables z, p and q and the
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coefficients of these variables are functions of the independent variables x and y only.

The most general first-order linear partial differential equation is of the form

a(x,y)p+ b(x,y)q+ c(x,y)z = d(x,y). (4)

The functions a, b, c and d are assumed to be continuously differentiable. If d(x,y) = 0,

the equation (4) is said to be homogeneous and if d(x,y) , 0, it is non-homogeneous

partial differential equation.

Examples of linear first-order equations are

np+ (x+ y)q − z = ex,

(y − z)p+ (z − x)q+ (x − y)z = 0.

(b) Quasi-linear equation

Equation (2) is called a quasi-linear first-order partial differential equation if it is

linear in first-partial derivatives of the unknown function z(x,y), i.e. if the equation is

of the form

a(x,y,z)p+ b(x,y,z)q = c(x,y,z). (5)

Examples of quasi-linear equations are

x(z − 2y2)p+ y(z − y2 − 2x2)q = z(z − y2 − 2x2),

zp+ q+nz2 = 0.

(c) Semi-linear equation

The equation (2) is semi-linear if the coefficients of p and q are independent of z,

i.e. the equation is of the type

a(x,y)p+ b(x,y)q = c(x,y,z). (6)

Examples of semi-linear equations are

(x+1)2p+ (y − 1)2q = (x+ y)z2,

xp+ yq = z2 + x2.

(d) Nonlinear equation

3



Chapter 2 First-Order Partial Differential Equations

An equation which does not belong to above types is known as nonlinear first-order

partial differential equation.

Examples of nonlinear equations are

p3 + q3 = 3pq,

q+ xp = p2.

3. Construction of First-Order Equations

First-order partial differential equations can be originated in many ways, e.g.by

elimination of arbitrary constants or functions and in studying physical or social phe-

nomena. Let us demonstrate how these equations occur.

(a) Elimination of arbitrary constants.

Consider a system of geometrical surfaces described by the relation

f (x,y,z,a,b) = 0 (7)

involving two independent variables x and y, one dependent variable z(x,y) and two

arbitrary constants a, b. Differentiation of (7) with respect to x and y, we get respec-

tively

fx + pfz = 0 and fy + qfz = 0,
(
p =

∂z
∂x
, q =

∂z
∂y

)
which involve two arbitrary parameters a and b and these can be eliminated from the

above set and equation (7) to obtain a first-order partial differential equation of the

form

F(x,y,z,p,q) = 0.

Example 1: Formulate the partial differential equation by eliminating the arbitrary

constants a and b from the equation (x − a)2 + (y − b)2 + z2 = 1.

Solution: Differentiating the given equation (x− a)2 + (y − b)2 + z2 = 1 with respect to x

and y, we get respectively

x − a+ zp = 0 and y − b+ zq = 0 so that a = x+ zp and b = y + zq.

Substituting these values of a and b in the given equation, the required partial differ-

ential equation is z2(p2 + q2 +1) = 1.

4



Chapter 2 First-Order Partial Differential Equations

(b) Elimination of arbitrary functions.

Let u = u(x,y,z) and v = v(x,y,z), where z = z(x,y), be two given functions of x, y, z

connected by the relation

ϕ(u,v) = 0.

Differentiating this relation partially with respect to x and y we get respectively

∂ϕ

∂u

(
∂u
∂x

+ p
∂u
∂z

)
+
∂ϕ

∂v

(
∂v
∂x

+ p
∂v
∂z

)
= 0,

and
∂ϕ

∂u

(
∂u
∂y

+ q
∂u
∂z

)
+
∂ϕ

∂v

(
∂v
∂y

+ q
∂v
∂z

)
= 0.

Elimination of ∂ϕ∂u and ∂ϕ
∂v between these two equations leads to

∂(u,v)
∂(y,z)

p+
∂(u,v)
∂(z,x)

q =
∂(u,v)
∂(x,y)

i.e. P p+Qq = R (8)

where P =
∂(u,v)
∂(y,z)

, Q =
∂(u,v)
∂(z,x)

, R =
∂(u,v)
∂(x,y)

. (9)

The first-order linear equation (8) is known as Lagrange’s equation of first-order.

Note: If the given relation between x, y and z contains two arbitrary functions, then

(excepting some cases), the partial differential equations of higher order are formed.

Example 2: Find the partial differential equation by eliminating the arbitrary func-

tion from the equation z = f
(
xy
z

)
.

Solution: Differentiating the equation z = f
(
xy
z

)
with respect to x and y, we get respec-

tively

p = f ′
(xy
z

)(y
z
−
xy

z2
p
)

and q = f ′
(xy
z

)(x
z
−
xy

z2
q
)

so that
p

q
=
yz − xyp
zx − xyq

i.e. px − qy = 0

This is the required equation.

We have already seen that a relation of the form f (x,y,z,a,b) = 0 leads to a partial

differential equations of first-order. Such a relation containing two arbitrary constants

a and b is a solution of the first-order partial differential equation and is called a com-

plete solution or a complete integral of that equation.
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On the other hand, any relation of the type ϕ(u,v) = 0 involving an arbitrary func-

tion ϕ connecting two known functions u(x,y,z) and v(x,y,z) and providing a solu-

tion of the first-order partial differential equation is called a general solution or gen-

eral integral of the equation. The general solution can also be obtained as the locus

of a parametric family of curves, called characteristics of the envelope of the family

f (x,y,z,a,ψ(a)) = 0, where b is supposed to be a function of a. The general solution of

a first-order partial differential equation represents a family of surfaces, called integral

surfaces.

The singular solution or singular integral is obtained from the complete integral by

the elimination of arbitrary constants. Thus, if f (x,y,z,a,b) = 0 is the complete integral

of the partial differential equation F(x,y,z,p,q) = 0, then the a and b - eliminant from

the equations f = 0, ∂f∂a = 0 and ∂f
∂b = 0 is the singular solution. The singular solution

can also be obtained from the partial differential equation itself by elimination of p

and q from the equations F = 0, ∂F∂p = 0, ∂F∂q = 0,

Example 3: The equation z2(p2 + q2 + 1) = c2, where c is constant, has a complete

integral of the form (x − a)2 + (y − b)2 + z2 = c2, a and b being arbitrary constants. Find

the singular integral and a general integral assuming b = a.

Solution: Differentiating the relation f (x,y,z,a,b) = (x−a)2+(y−b)2+z2−c2 = 0 partially

with respect to a and b, we get respectively x − a = 0 and y − b = 0 i.e. a = x, b = y.

Eliminating of a and b from f (x,y,z,a,b) = 0 gives the singular solution as z = ±c.

Alternatively,We differentiate the given partial differential equation F(x,y,z,p,q) =

z2(p2 + q2 +1)− c2 = 0 partially with respect to p and qand get respectively pz = 0 and

qz = 0, i.e. p = 0 and q = 0. Eliminating p and q from F(x,y,z,p,q) = 0 the desired

singular solution is obtained as z = ±c.

Now, making b = a in f (x,y,z,a,b) = 0 we get

f (x,y,z,a,a) = (x − a)2 + (y − a)2 + z2 − c2 = 0

Differentiating with respect to a, gives x − a+ y − a = 0 i.e. a = 1
2(x + y). Eliminating a

from f (x,y,z,a,a) = 0 we have 1
2(x−y)

2+z2− c2 = 0, i.e. (x−y)2+2z2 = 2c2 which is the

required general integral,

Finally, it is important to note that the solutions of a partial differential equation

are to be represented by smooth functions, i.e. the functions whose all derivatives exist
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and are continuous. However, in general, solutions are not always smooth. A solution

which is not everywhere differentiable is called a weak solution.

4. Existence of Solutions of First-Order Partial differential Equations-

Cauchy Problem

The existence of solutions of a first-order partial differential equation is not guar-

anteed. However, if the equation satisfies certain conditions, then the solution does

exist.

Cauchy problem:

Suppose

(a) the function x0(µ), y0(µ) and z0(µ) along with their first derivatives are continuous

in the interval I : µ1 < µ < µ2 and

(b) the function F(x,y,z,p,q) is continuous in x,y,z,p,q in a region Ω of the xyzpq-

space.

Then the problem is to establish a function ϕ(x,y) with the following properties :

(i) The function ϕ(x,y) and its derivatives ϕx(x,y) with respect to x and ϕy(x,y) with

respect to y are continuous in a region R of the xy-space.

(ii) The point
{
x,y,ϕ(x,y),ϕx(x,y),ϕy(x,y)

}
∈Ω and F

(
x,y,ϕ(x,y),ϕx(x,y),ϕy(x,y)

)
=

0, ∀ x,y ∈ R.

(iii) The point
{
x0(µ), y0(µ)

}
∈ R and ϕ

{
x0(µ), y0(µ)

}
= z0, ∀ µ ∈ I .

Geometrically, Cauchy problem can be stated as follows:

To prove the existence of a surface z = f (x,y) passing through a curve Γ with para-

metric equation

x = x0(µ), y = y0(µ), z = z0(µ) (10)

and at every point of which the direction (p,q − 1) of the normal is such that

F(x,y,z,p,q) = 0 (11)
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For the existence of a solution of the equation (11) passing through a curve Γ having

equations (10), we have to make some other assumptions regarding the function F and

the curve Γ . We state a theorem, known as Cauchy-Kowalewski theorem without proof

for the existence of solution of (11).

Cauchy-Kowalewski theorem

Suppose a function g(y) and all its derivatives are continuous for |y − y0| < δ, x0
is a given number and z0 = g(y0), q0 = g ′(y0). Also, the f (x,y,z,q) and all its partial

derivatives are continuous in a region S defined by

|x − x0| < δ, |y − y0| < δ, |z − z0| < δ.

Then there exists a unique function ϕ(x,y) such that

(i) ϕ(x,y) and all its partial derivatives are continuous in a region R defined by

|x − x0| < δ1, |y − y0| < δ2;

(ii) for all (x,y) ∈ R, z = ϕ(x,y) is a solution of the equation p = f (x,y,z,q);

(iii) for all values of y in the interval |y − y0| < δ, ϕ(x0, y) = g(y).

5. Compatible Systems of First-Order Equations

Two first-order partial differential equations

F(x,y,z,p,q) = 0 and G(x,y,z,p,q) = 0 (12)

are said to be compatible if a solution of the former satisfies the latter and conversely.

Let us assume that J = ∂(F,G)
∂(p,q) , 0 so that the equations (12) can be solved for p and

q in the form

p = p(x,y,z), q(q(x,y,z).

Now the condition of compatibility for the equations (12) is that dz = pdx + qdy is

integrable and it is possible provided X.(∇×X) = 0, where X = (p,q − 1), i.e. if

p
∂q

∂z
− q

∂p

∂z
+
∂q

∂x
−
∂p

∂y
= 0,

or, qx + pqz = py + qpz. (13)

8



Chapter 2 First-Order Partial Differential Equations

Now, differentiating the first equation of (12) partially with respect to x and z, we get

respectively

Fx +Fppx +Fqqx = 0

and Fz +Fppz +Fqqz = 0.

Multiplying the second equation of these by p and adding the result with the first

equation, we obtain

Fx + pFz +Fp(px + ppz) +Fq(qx + pqz) = 0. (14a)

Similarly, from the second equation of (12) we get

Gx + pGz +Gp(px + ppz) +Gq(qx + pqz) = 0. (14b)

Elimination of px + ppz between the equations (14) leads to

∂(F,G)
∂(x,p)

+ p
∂(F,G)
∂(z,p)

− ∂(F,G)
∂(p,q)

(qx + pqz) = 0

so that qx + pqz =
1
J

[
∂(F,G)
∂(x,p)

+ p
∂(F,G)
∂(z,p)

]
. (15a)

Similarly, differentiating the equations (12) with respect to y and z and then proceed-

ing as above, we obtain

py + qpz = −
1
J

[
∂(F,G)
∂(y,q)

+ q
∂(F,G)
∂(z,q)

]
. (15b)

Using (15), it follows from (13)

∂(F,G)
∂(x,p)

+
∂(F,G)
∂(y,q)

+ p
∂(F,G)
∂(z,p)

+ q
∂(F,G)
∂(z,q)

= 0

which, in short, is written as [F,G] = 0. (16)

Example 4: Show that the equations xp = yq and z(xp+ yq) = 2xy are compatible.
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Solution: Let F(x,y,z,p,q) = xp − yq = 0 and G(x,y,z,p,q) = z(xp+ yq)− 2xy = 0

[F,G] =
∂(F,G)
∂(x,p)

+
∂(F,G)
∂(y,q)

+ p
∂(F,G)
∂(z,p)

+ q
∂(F,G)
∂(z,q)

=
(
∂F
∂x

∂G
∂p
− ∂F
∂p

∂G
∂x

)
+
(
∂F
∂y

∂G
∂q
− ∂F
∂q

∂G
∂y

)
+p

(
∂F
∂z
∂G
∂p
− ∂F
∂p

∂G
∂z

)
+ q

(
∂F
∂z
∂G
∂q
− ∂F
∂q

∂G
∂z

)
=

{
p(zx)− x(zp − 2y)

}
+
{
(−q)zy − (−y)(zq − 2x)

}
+p

{
0.(zx)− x(zp+ yq)

}
+ q

{
0.(zq)− (−y)(xp+ yq)

}
= 2xy − 2xy + (xp+ yq)(−px+ qy)

= 0 (∵ px = qy).

Thus the given equations are compatible.
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